The Crystal Structure of One Pseudo-Diels-Alder Dimer of Norbornadiene

By C.N. Caughlan, G.D.Smith, P. W.Jennings and G. E. Voecks
Department of Chemistry, Montana State University, Bozeman, Montana 59715, U.S.A.

(Received 6 May 1975; accepted 20 August 1975)
$\mathrm{AgNO}_{3} \mathrm{C}_{14} \mathrm{H}_{16}$, monoclinic, $P 2_{1} / c ; a=17.554$ (9), $b=6.908$ (4), $c=11.031$ (5) $\AA, \beta=103 \cdot 10^{\circ}, Z=4 \cdot 0$, $R=9 \cdot 1$. The stereochemistry is identified. Silver is shown to be equidistant from two carbon atoms involved in the double bond with short distances of 2.31 and $2.33 \AA$.

Introduction

The photochemical dimerization of norbornadiene using $\mathrm{Ni}(\mathrm{CO})_{4}$ as a catalyst has been found to produce two pseudo-Diels-Alder dimers which may have any one of the following structures (Voecks, Jennings, Smith \& Caughlan, 1972).

(I)

(III)

(II)

(IV)

The stereochemistry of (I) and (II) has been assigned by Katz, Carnahan \& Boecke (1967). The crystal structure of (III) was undertaken in order to establish unambiguously the stereochemistry of one of the remaining compounds and also to provide information which would make it possible to correlate the actual structure with its NMR spectrum.

Experimental

A saturated silver nitrate solution was added to (III). The resulting precipitate was washed with water and recrystallized from absolute ethanol. Since these clear, colorless crystals were not stable in the presence of water vapor, it was necessary to mount them inside Lindemann glass capillaries. Preliminary Weissenberg photographs indicated monoclinic symmetry with extinctions $0 k 0, k \neq 2 n$ and $h 0 l, l \neq 2 n$ which uniquely defined the space group as $P 2_{1} / c$.

Precise unit-cell dimensions were determined from a

Table 1. Crystal data

$$
\begin{array}{ll}
\mathrm{AgNO}_{3} \mathrm{C}_{14} \mathrm{H}_{16} \\
a=17 \cdot 554(9) \\
b=6 \cdot 908(4) & \\
c=11 \cdot 031(5) & \beta=103 \cdot 10(3)^{\circ} \\
\text { Space group } P 2_{1} / c & Z=4 \\
D_{o}=1.78 & D_{c}=1 \cdot 81 \mathrm{~g} \mathrm{~cm}^{-3}
\end{array}
$$

least-squares refinement of 15 independent measurements taken on a G.E. XRD-5 diffractometer using Mo $K \alpha$ radiation and a scintillation counter as a detector. Crystal data are listed in Table 1.

The crystal which was used for both the determination of lattice parameters and for the first half of the data collection was mounted along \mathbf{b} and was bound by $\{100\},\{001\}$ and $\{011\}$. Its approximate dimensions were $0.1 \times 0.5 \times 0.5 \mathrm{~mm}$.

A unique data set was collected by the $\theta-2 \theta$ scan technique using 60 s scans at $2^{\circ} \mathrm{min}^{-1}$ and counting backgrounds for 10 s on either side of the peak. Three standard reflexions were measured every 50 reflexions. During the course of the data collection, the crystal gradually turned brown and the standard intensities decreased. Approximately halfway through the data collection, the standards had decreased by 20%. At this point a new crystal bound by the same form of planes and of approximately the same size was used to finish data collection. In this manner, 1181 intensities below a 2θ of 40° were measured and 841 of these were considered observed based on the criteria $I>2 \sigma(I)$. The remaining 340 were given zero weight and were not used in the refinement.
The data were corrected for Lorentz and polarization factors in the usual manner. A correction for absorption was made using the method of deMeulenaer \& Tompa (1965); transmission coefficients varied from 0.83 to 0.97 . Weights were calculated according to the method of Stout \& Jensen (1968): $w^{\prime}=\left\{1 / 4 \mathrm{Lp} I\left[\sigma^{2}(I)+\right.\right.$ $\left.\left.(0.05 I)^{2}\right]\right\}^{-1}$. Atomic scattering factors were from International Tables for X-ray Crystallography (1962) for all atoms other than H ; both real and imaginary terms were applied to Ag. Hydrogen scattering factors were from Stewart, Davidson \& Simpson (1965). No correction for extinction was applied.

Table 2. Positional and thermal parameters
All values for non-hydrogen atoms have been multiplied by 10^{4}. The form of anisotropic temperature factor is $\exp \left[-\left(\sum_{l=1,3} \sum_{J=1,3} h_{l} h_{J} \beta_{l j}\right)\right]$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Ag	$650 \cdot 8$ (5)	836.9 (10)	3999.0 (6)	$70 \cdot 4$ (4)	338.1 (22)	$144 \cdot 5$ (9)	- $15 \cdot 3$ (9)	$7 \cdot 7$ (4)	-5.6(12)
C(1)	1876 (6)	1256 (12)	5293 (8)	65 (5)	244 (26)	129 (10)	15 (11)	3 (6)	40 (13)
C(2)	1437 (5)	2695 (15)	5559 (7)	56 (5)	341 (30)	102 (9)	-6 (10)	17 (5)	12 (13)
C(3)	2505 (6)	2073 (13)	4701 (7)	69 (5)	265 (25)	112 (9)	24 (10)	31 (6)	13 (13)
C(4)	1774 (5)	4537 (11)	5149 (7)	66 (5)	217 (24)	105 (9)	36 (9)	0 (5)	10 (12)
C(5)	3041 (6)	3045 (12)	5841 (6)	61 (5)	281 (24)	90 (8)	27 (10)	9 (5)	34 (12)
C(6)	2545 (5)	4744 (12)	6139 (6)	54 (4)	245 (23)	88 (8)	14 (9)	13 (5)	8 (11)
C(7)	2046 (5)	3783 (11)	4021 (6)	58 (4)	285 (24)	91 (8)	11 (9)	19 (5)	1 (12)
C(8)	3819 (6)	4044 (13)	5713 (7)	53 (5)	329 (25)	133 (10)	58 (11)	18 (5)	4 (14)
C(9)	3103 (5)	6498 (13)	6155 (7)	57 (5)	304 (26)	109 (9)	41 (9)	8 (5)	-61 (12)
C(10)	3729 (6)	5407 (13)	4613 (7)	58 (5)	359 (30)	117 (9)	1 (11)	20 (5)	11 (14)
C(11)	3248 (5)	7035 (12)	4919 (8)	52 (5)	260 (25)	137 (11)	16 (10)	13 (5)	8 (13)
C(12)	4108 (7)	7293 (15)	5060 (9)	76 (7)	420 (36)	164 (12)	-25 (12)	32 (7)	74 (16)
C(13)	4506 (6)	7065 (16)	6415 (9)	57 (6)	457 (34)	204 (13)	-20 (11)	28 (6)	-30 (17)
C(14)	3898 (6)	5649 (17)	6700 (9)	65 (6)	431 (33)	97 (10)	10 (12)	-4 (6)	26 (17)
$\mathrm{N}(1)$	-798 (7)	2652 (13)	2734 (8)	56 (5)	351 (28)	129 (10)	31 (11)	5 (6)	-47 (13)
$\mathrm{O}(1)$	-711 (4)	1437 (10)	3576 (6)	81 (4)	419 (20)	163 (8)	2 (8)	35 (5)	41 (10)
O(2)	-1430 (5)	3288 (11)	2260 (6)	68 (4)	483 (23)	212 (10)	52 (8)	16 (5)	-40 (11)
O(3)	-202 (5)	3138 (11)	2352 (6)	63 (4)	509 (25)	185 (9)	-11(9)	20 (5)	82 (11)

Table 2 (cont.)
Hydrogen atom positional parameters have been multiplied by 10^{3}. Isotropic temperature factors, B, are given.

	x	y	z	B
$\mathbf{H}(1)$	$192(3)$	$26(7)$	$568(5)$	$3 \cdot 7(12)$
$\mathbf{H}(2)$	$108(3)$	$266(7)$	$608(4)$	$3 \cdot 6(13)$
$\mathbf{H}(3)$	$287(4)$	$113(8)$	$412(5)$	$5 \cdot 6(16)$
$\mathbf{H}(4)$	$155(3)$	$546(8)$	$499(5)$	$4 \cdot 7(14)$
$\mathbf{H}(5)$	$318(3)$	$199(8)$	$654(4)$	$4 \cdot 2(13)$
$\mathbf{H}(6)$	$253(4)$	$423(10)$	$697(6)$	$7 \cdot 9(19)$
$\mathbf{H}(7)$	$173(4)$	$324(10)$	$336(5)$	$6 \cdot 2(17)$
$\mathbf{H}(8)$	$238(3)$	$452(7)$	$370(4)$	$2 \cdot 9(11)$
$\mathbf{H}(9)$	$418(3)$	$326(7)$	$580(4)$	$2 \cdot 9(11)$
$\mathbf{H}(10)$	$296(3)$	$733(8)$	$658(4)$	$3 \cdot 8(13)$
$\mathbf{H}(11)$	$369(4)$	$474(10)$	$381(6)$	$7 \cdot 4(19)$
$\mathbf{H}(12)$	$276(4)$	$780(8)$	$424(5)$	$5 \cdot 0(15)$
$\mathbf{H}(13)$	$427(5)$	$810(11)$	$464(6)$	$4 \cdot 5(22)$
$\mathbf{H}(14)$	$499(5)$	$678(13)$	$657(8)$	$6 \cdot 2(26)$
$\mathbf{H}(15)$	$442(4)$	$840(10)$	$686(6)$	$4 \cdot 7(18)$
$\mathbf{H}(16)$	$395(4)$	$508(9)$	$734(6)$	$3 \cdot 4(19)$

Fig. 1. $O R T E P$ drawing illustrating the asymmetric portion of the unit cell. Thermal ellipsoids have been scaled to include 30% probability; hydrogen atoms have been assigned an isotropic temperature factor of 1.0 for clarity.

Table 3. Bond distances (\AA)

$\mathrm{Ag}-\mathrm{C}(1)$	$2.31(1)$	$\mathrm{C}(8)-\mathrm{C}(10)$	$1.52(1)$
$\mathrm{Ag}-\mathrm{C}(2)$	$2.33(1)$	$\mathrm{C}(8)-\mathrm{C}(14)$	$1.54(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.33(1)$	$\mathrm{C}(8)-\mathrm{H}(9)$	$0.82(5)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.51(2)$	$\mathrm{C}(9)-\mathrm{C}(11)$	$1.49(1)$
$\mathrm{C}(1)-\mathrm{H}(1)$	$0.80(6)$	$\mathrm{C}(9)-\mathrm{C}(14)$	$1.51(1)$
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.52(1)$	$\mathrm{C}(9)-\mathrm{H}(10)$	$0.82(6)$
$\mathrm{C}(2)-\mathrm{H}(2)$	$0.94(5)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.49(1)$
$\mathrm{C}(3)-\mathrm{C}(5)$	$1.54(1)$	$\mathrm{C}(10)-\mathrm{C}(12)$	$1.50(1)$
$\mathrm{C}(3)-\mathrm{C}(7)$	$1.53(1)$	$\mathrm{C}(10)-\mathrm{H}(11)$	$0.99(7)$
$\mathrm{C}(3)-\mathrm{H}(3)$	$1.20(6)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.49(2)$
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.54(1)$	$\mathrm{C}(11)-\mathrm{H}(12)$	$1.13(6)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.52(1)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.51(1)$
$\mathrm{C}(4)-\mathrm{H}(4)$	$0.75(6)$	$\mathrm{C}(12)-\mathrm{H}(13)$	$0.82(8)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.54(1)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.53(2)$
$\mathrm{C}(5)-\mathrm{C}(8)$	$1.56(1)$	$\mathrm{C}(13)-\mathrm{H}(14)$	$0.85(9)$
$\mathrm{C}(5)-\mathrm{H}(5)$	$1.05(6)$	$\mathrm{C}(13)-\mathrm{H}(15)$	$1.07(7)$
$\mathrm{C}(6)-\mathrm{C}(9)$	$1.56(1)$	$\mathrm{C}(14)-\mathrm{H}(16)$	$0.80(6)$
$\mathrm{C}(6)-\mathrm{H}(6)$	$0.99(7)$	$\mathrm{N}-\mathrm{O}(1)$	$1.24(1)$
$\mathrm{C}(7)-\mathrm{H}(7)$	$0.89(6)$	$\mathrm{N}-\mathrm{O}(2)$	$1.20(1)$
$\mathrm{C}(7)-\mathrm{H}(8)$	$0.91(5)$	$\mathrm{N}-\mathrm{O}(3)$	$1.26(1)$

Table 4. Bond angles (${ }^{\circ}$)

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	109.4 (8)	$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{H}(10)$	119.(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	121. (4)	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{H}(10)$	$115 \cdot$ (4)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1)$	124. (4)	$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(11)$	$104 \cdot 4$ (7)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$106 \cdot 1$ (8)	$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(12)$	$108 \cdot 6$ (8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	128. (3)	$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{H}(11)$	$114 \cdot$ (4)
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{H}(2)$	124. (3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)$	60.0 (6)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(5)$	$100 \cdot 4$ (7)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(11)$	129. (4)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(7)$	98.3 (7)	$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{H}(11)$	$130 \cdot(4)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	124. ${ }^{\text {(3) }}$	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(10)$	$104 \cdot 0$ (7)
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(7)$	$102 \cdot 7$ (7)	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$108 \cdot 2$ (8)
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{H}(3)$	112. (3)	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(12)$	$117 \cdot$ (3)
$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{H}(3)$	$116 \cdot$ (3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	60.2 (6)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(6)$	$101 \cdot 9$ (7)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(12)$	$126 \cdot$ (3)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(7)$	99.9 (7)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(12)$	127. (3)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{H}(4)$	124. (4)	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(13)$	$107 \cdot 9$ (9)
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(7)$	$102 \cdot 9$ (6)	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(13)$	$126 \cdot$ (6)
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{H}(4)$	115. (4)	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(11)$	59.8 (6)
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{H}(4)$	$110 \cdot(4)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$108 \cdot 7$ (9)
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$103 \cdot 6$ (7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(13)$	$120 \cdot(6)$
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(8)$	$120 \cdot 1$ (7)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(13)$	119. (6)
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5)$	107. (3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(14)$	$116 \cdot(6)$
C(6)--C(5)-C(8)	$103 \cdot 3$ (7)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(14)$	$121 \cdot(6)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	115.(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	94.7 (8)
$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{H}(5)$	108. (3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(15)$	106. (4)
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(5)$	$103 \cdot 1$ (6)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(15)$	$106 \cdot(4)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(9)$	$122 \cdot 0$ (7)	$\mathrm{H}(14)-\mathrm{C}(13)-\mathrm{H}(15)$	$110 \cdot(7)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(6)$	115. (4)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	$105 \cdot 7$ (8)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	$102 \cdot 2$ (6)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{H}(16)$	104. (5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	93. (4)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(9)$	$94 \cdot 1$ (8)
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{H}(6)$	115. (4)	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$107 \cdot 1$ (8)
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{H}(7)$	104. (4)	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{H}(16)$	$117 \cdot(5)$
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{H}(8)$	108. (3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(16)$	124. (5)
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(4)$	$95 \cdot 2$ (6)	$\mathrm{O}(1)-\mathrm{N}-\mathrm{O}(2)$	$121 \cdot 5$ (10)
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{H}(7)$	124. (4)	$\mathrm{O}(2)-\mathrm{N}-\mathrm{O}(3)$	120.9 (10)
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{H}(8)$	119. (3)	$\mathrm{O}(1)-\mathrm{N}-\mathrm{O}(3)$	$117 \cdot 5$ (9)
$\mathrm{H}(7)-\mathrm{C}(7)-\mathrm{H}(8)$	105. (5)		
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(10)$	114.3 (7)		
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(14)$	$101 \cdot 2$ (7)		
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{H}(9)$	$111 \cdot(3)$		
$\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(14)$	95.5 (7)		
$\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{H}(9)$	116. (4)		
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{H}(9)$	$117 \cdot(4)$		
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(11)$	$114 \cdot 9$ (7)		
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(14)$	$103 \cdot 0$ (7)		
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{H}(10)$	106. (4)		
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(14)$	97.3 (7)		

Discussion

The final positional and thermal parameters along with their standard deviations are listed in Table 2.* Fig. 1 is an ORTEP drawing illustrating the asymmetric portion of the unit cell; distances in the organic molecule and the nitrate ion are in Table 3, bond angles in Table 4.

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31375 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, England.

Fig. 2. ORTEP drawing to illustrate the interactions between the silver ion, the nitrate ions and the doubly bonded portion of the organic molecule. Small black circles are centers of inversion. The b axis is perpendicular to the plane of the paper, the a axis is nearly horizontal, while the c axis is vertical.

Fig. 3. Dihedral angles in the organo-silver complex. The complex is viewed perpendicular to the pseudo-mirror plane of the molecule.

Table 5. Equations of planes
The equation for the plane is $A x+B y+C z-D=0$ where A, B, and C are direction cosines, D is the perpendicular distance from the plane to the origin, and \sum is the sum of the squares of the deviations of the atoms from the least-squares plane. The orthogonal coordinate system from which these values are calculated is defined by x along \mathbf{a}, y in the $\mathbf{a b}$ plane, and z along \mathbf{c}^{*}.

	A	B	C	D	Σ
$\mathrm{Ag}-\mathrm{C}(1)-\mathrm{C}(2)$	-0.4388	-0.5694	$0 \cdot 6952$	2.595	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(1)-\mathrm{H}(2)$	0.5899	$0 \cdot 3502$	0.7276	$5 \cdot 635$	0.002
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	0.4175	0.0877	$0 \cdot 9044$	6.040	9.6×10^{-6}
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	0.7827	0.5724	$0 \cdot 2445$	$4 \cdot 576$	
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.5203	-0.5953	$0 \cdot 6123$	$0 \cdot 568$	8.6×10^{-5}
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(9)$	$0 \cdot 1622$	-0.1406	0.9767	$6 \cdot 460$	2.2×10^{-5}
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	0.7508	0.4795	$0 \cdot 4543$	$8 \cdot 090$	5.7×10^{-6}
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-0.0579	-0.3235	0.9444	$3 \cdot 160$	
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$0 \cdot 5479$	0.6048	-0.5763	1.052	
$\mathrm{N}-\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}(3)$	0.0053	0.7433	$0 \cdot 6689$	$3 \cdot 301$	2.7×10^{-4}

The distances and angles between non-hydrogen atoms are about what one would expect for a molecule as highly distorted as this.

C-C single bond distances range from 1.49 to $1.57 \AA$. Corresponding distances and angles between nonhydrogen atoms across the pseudo-mirror plane of the molecule differ by less than three standard deviations. Distances and angles involving H are not as good as could be hoped for. These results are not too surprising since the crystal suffered from decomposition, requiring the use of two crystals to collect the data, and a heavy Ag atom was present.

Table 5 contains the equations of planes of various atoms in the asymmetric unit while Fig. 3 illustrates the dihedral angles between some of these planes. $\mathrm{C}(7)$, $\mathrm{H}(7)$ and $\mathrm{H}(8)$ all lie on the same side of the plane defined by the cyclopropane ring [$\mathrm{C}(10), \mathrm{C}(11)$ and $\mathrm{C}(12)$] with distances of $0.08,0.60$ and $0.60 \AA$ respectively. These distances and the effect of the cyclopropane ring on the NMR spectrum have been discussed by Voecks et al. (1972).

The Ag is equidistant, within two standard deviations, from $C(1)$ and $C(2)$, the C atoms involved in the double bond. The distances of $2 \cdot 31$ (1) and $2 \cdot 33$ (1) \AA between Ag and the two C atoms are to our knowledge the shortest distances of this type reported. Values of 2.38 (1) and 2.41 (1) \AA have been reported for AgNO_{3}-cyclononatriene (Jackson \& Streib, 1967), 2.31 (5) and 2.41 (4) \AA for AgNO_{3}-norbornadiene (Baenziger, Haight, Alexander \& Doyle, 1966) and 2.46 and $2.51 \AA$ for AgNO_{3}-cyclooctatetraene (Matthews \& Lipscomb, 1959). The Ag atom does not lie directly over the double bond between $C(1)$ and $C(2)$, but is displaced 23° from the perpendicular. The distance from Ag to $\mathrm{H}(1)$ is 2.59 (5) \AA and to $\mathrm{H}(2)$, 2.58 (4) \AA; however, the distance to $H(7)$ is 2.73 (7) \AA and although these differences are not greatly significant, we feel that the 23° distortion is not simply due to steric interaction. Distortions of this nature, are not uncommon. In AgNO_{3}-cyclononatriene (Jackson \& Streib, 1967) a distortion of 17° is reported while in AgNO_{3}-norbornadiene (Baenziger et al., 1966) the distortion is 24°.

There is a rather extensive network of silver and nitrate ions lying in the (100) face of the unit cell. The silver ion has three nitrate ions and one dimer unit around it in approximately a tetrahedral configuration. There are five $\mathrm{Ag}-\mathrm{O}$ distances which range from 2.366 (7) to $3.083 \AA$. Two of these distances are short enough to be considered to have some degree of covalency in the bonding. As can be seen from Fig. 2, the interactions between the silver and nitrate ions are rather complicated. Each silver ion interacts with three nitrate ions while each nitrate ion interacts with three different silver ions. This sort of behavior was also noted by Jackson \& Streib (1967). However, each silver ion is associated with only one dimer unit.

The nitrate groups are essentially planar. The shortest bond distance between N and O is associated with the O that is farthest from any silver ion.
P.W.J. and G.E.V. wish to thank The Petroleum Fund, administered by the American Chemical Society, and Cities Service Oil Co. for support of this research.
We are grateful to Montana State University for a grant of computing time.

References

Baenziger, N. C., Haight, H. L., Alexander, R. \& Doyle, J. R. (1966). Inorg. Chem. 5, 1399-1401.

International Tables for X-ray Crystallography (1962). Vol. III, pp. 331-338. Birmingham: Kynoch Press.
Jackson, R. B. \& Streib, W. E. (1967). J. Amer. Chem. Soc. 89, 2539-2543.
Katz, T. J., Carnahan, J. C. \& Boecke, R. (1967). J. Org. Chem. 32, 1301-1304.
Matthews, F. S. \& Lipscomb, W. N. (1959). J. Phys. Chem. 63, 845-850.
Meulenaer, J. de \& Tompa, J. (1965). Acta Cryst. 19, 1014-1018.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Stout, G. H. \& Jensen, L. H. (1968). X-Ray Structure Determination, p. 456. New York: Macmillan.
Voecks, G. E., Jennings, P. W., Smith, G. D. \& Caughlan, C. N. (1972). J. Org. Chem. 37, 1460-1462.

